
Findings

● DAMA effectively reduces 
bias with minimal change 
in end-task performance

● Bias stored in mid-upper
feed-forwards (not last)

● Stereotypical and factual 
gender weights are stored 
in the same layers
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Idea

PROMPT DAMA @1 @2 @3 @4
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The mechanic greets with the 
receptionist because he was 
in a good mood. ”He” refers 
to the
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Casual Tracing

Factual
monk 0.8 nun -0.8

waiter 1.0 waitress -0.9

Stereotypical
nuse -0.9 mechanic 0.6

receptionist -0.7 lifeguard 0.6

Decrease gender bias in language generation 
without harming the model's performance.

PM(“he”) - PM(“she”) ≈ af  ⋅ xf + as ⋅ xs + b

Mid-upper feed-forward layers are responsible for 
factual and stereotypical associations.

We use a simple linear model to estimate factual 
and stereotypical signal influence on predictions:

Projection nullifies gender 
signal (v) in the representation 

of biased prompt (u).
We intervene in ⅓ mid-upper 

layers (yet not the last).

We adapt the feed-forward layers by applying projections.

“The lifeguard laughed because ___”

Efficient at Scale
Effectively applied to LLaMA models with 7, 13, 30, 
65B parameters. More efficient than fine-tuning.

Evaluation

Table 2: Bias vs. General Performance Table 1: Qualitative Evaluation of DAMA

METHOD 
Language Modeling WinoBias End-task 

Factual
(af) 

Stereotyp 
(as) 

Intercept
 (b) Perplexity △ S △G MMLU

LLaMA 7B 0.320 0.235 0.072 26.1 40.3% 3.0% 30.3

FT LoRA 0.261 0.144 -0.040 51.1 34.4% 5.6% 26.6

MEMIT 0.282 0.209 0.071 26.1 40.5% 3.3% 30.2

DAMA 0.038 -0.005 -0.006 28.9 31.5% 2.3% 30.8

http://github.com/tomlimi/dama

